
Top 70 ReactJS Interview Questions and
Answers PDF

ReactJS Interview Questions and Answers for Freshers

1. What is ReactJS?
ReactJS is an open-source, component-based front-end JavaScript library essential for the
view layer of the application. It is supported by Facebook.

ReactJS utilizes a virtual DOM-based structure to fill in the information in HTML DOM. The
virtual DOM works quickly, possessing a way that it only modifies single DOM components
rather than refreshing the complete DOM every time.

The React application comprises several components, each answerable for outputting a
small, reusable part of HTML. Components can be embedded inside other components to
permit complex applications to work out of basic building blocks.

A component can also support an internal state. For instance, a TabList component can save
a variable compared to the directly open tab.

2. What are the benefits of ReactJS?
The main advantages of ReactJS are as follows:

Easy to learn
ReactJS is not a core but a JS library that takes together objects and targets a specific thing
to complete it effectively. It is the view controller in the MVC structure. Any developer who
learns JavaScript can interpret React, master its fundamentals, and develop a fantastic app.

Reusable Components
Reusing components is the primary feature of React JS. Even Facebook has executed
React as it supports the reuse of framework components. A developer can begin with
numerous components like a checkbox, button, etc.

We develop wrapper components made out of those smaller components. Then, we write
higher-level wrapper components. It goes on like that until we have this one root component,
and that component is our app.

Virtual DOM
When we are about to build a web application with high customer connection and view
updates, similar to the new form-maker on JotForm 4.0, we have to consider the available
execution problem.

Updating DOM is generally the bottleneck concerning web execution. React attempts to
understand this issue by utilizing virtual DOM and a DOM kept in memory.

Flux and Redux architecture
Facebook developed Flux architecture for its various web applications. It is like React
components in its unidirectional flow. This structure has action creators that facilitate making
action from method parameters. It also supports a library for these methods.

All these actions are supported together by a focal dispatcher to refresh stores. All views are
restored according to the stores. There is likewise Redux, which is an upgraded version of
flux architecture.

It has an individual store which is not needed in flux. Redux also allows a feature where
middleware can be characterized to capture dispatched actions.

SEO-Friendly
SEO is the pillar of a strong business. A superior ranking is equivalent to more commitment
from the person, which results in more income.

In addition, ReactJS generally provides a quicker speed by decreasing the time of page
load, which is crucial for SEO.

Developer Tools
The React Developer Tools have been described as Chrome and Firefox dev extensions and
permit us to review the React component order in the virtual DOM.

It also allows us to choose specific components and check and alter their current props and
state.

Scope for Code Testing
The applications of ReactJS are simple to set. Moreover, it allows developers to test and
debug their programs using native tools quickly.

Performance Enhancement
ReactJS improves execution because of virtual DOM. The DOM is a cross-platform
programming API that manages with HTML, XML, or XHTML.

Some developers face the issue when updating the DOM, which hinders the application’s
performance. ReactJS solved this problem by representing virtual DOM.

The React Virtual DOM exists in memory and is a definition of the internet browser's DOM.
When we compose a React element, we do not correspond precisely to the DOM.

Instead, we are comprising virtual elements that React will pass into the DOM, enabling
smoother and quicker performance.

3. What is Create React App?
This is one of the frequently asked React interview questions for freshers. Find the answer
below:

Create react app is a React app standard generator developed by Facebook. It supports a
development setting configured for usability with minimal setup.

Here are some of the most important things to know about “create react app”:

● It involves ES6 and JSX transpilation
● Consists of a Dev server with hot module reloading
● Used for Code linting
● Can contain CSS auto-prefixing
● It can develop the script with JS, CSS, picture packaging, and sourcemaps
● Used for the Jest testing system.

4. What are the features of ReactJS?
There are several features of ReactJS as follows:

Virtual DOM

In React, for each DOM object, there is a corresponding "virtual DOM object." A virtual DOM
object is a definition of a DOM object and makes a virtual replica of the initial DOM.

It is a one-way data-binding; therefore, controlling the virtual DOM is faster than updating the
initial DOM since nothing gets drawn onscreen.

JSX

JSX represents JavaScript XML. It is a JavaScript syntax extension. It is an XML or HTML
like syntax utilized by ReactJS.

This syntax is handled in JavaScript calls of React framework. It broadens the ES6 so
HTML-like content can exist together with JavaScript react code. It is not necessary to utilize
JSX, but it is endorsed to use it in ReactJS.

Simplicity

ReactJS uses the JSX file, which makes the application simple to program and understand.

We learn that ReactJS is a component-based technique that establishes the code reusable
as our need. This creates it simple to use and learn.

One-way Data Binding

One-way data binding defines that data flows only in one direction through the entire
application. This provides better control over it. The data is moved from the parent
component to the child component through read-only props.

These props cannot be sent back to the parent component. This is how one-way data
binding works. Although, the child component can interact with the parent component to
update the state via callback functions.

React Native

React Native is a custom performed for React, directly comparable to React DOM on the
web. It uses native components rather than web components like React as building blocks.

It can start with React Native, and we must know the essential React concepts, like JSX,
components, state, and props. It also provides an approach to these platform features, from
changing the React program to working on iOS and Android.

5. What are the disadvantages of ReactJS?
The disadvantages of ReactJS are as follows:

Dynamic Technology

One of the disadvantages of ReactJS is that it keeps on changing with time. Therefore, it is a
constant learning technique for the developers, who have to understand new methods of
doing things that come with uncertain circumstances.

Average Documentation

It is another disadvantage of constantly updating technologies. There is a lack of suitable
documentation because of the fast updating of React technologies.

JSX as a barrier

ReactJS utilizes JSX, which is a syntax extension that enables the combining of HTML and
JavaScript. This method is helpful, but some development community members treat JSX as
a barrier, especially the new developers. In addition, developers argue about the learning
curve complexity of JSX.

View Part

Only UI layers of the app get covered by ReactJS. Therefore, choosing a few other
technologies is necessary to get a complete collection of tooling for the project's
development.

6. How to install ReactJS?
ReactJS is a JavaScript library included in a single file react-<version>.js that can be
contained in any HTML page. The developers also generally install the React DOM library
react-dom-<version>.js along with the main React file:

Example

<!DOCTYPE html>
<html>
<head></head>
<body>
<script type="text/javascript" src="/path/to/react.js"></script>
<script type="text/javascript" src="/path/to/react-dom.js"></script>
<script type="text/javascript">
// Use react JavaScript program here or in an individual file
</script>
</body>
</html>

To obtain the JavaScript files, go to the https://reactjs.org/docs/getting-started.html of the
official React documentation.

React also provides JSX syntax. JSX is an extension generated by Facebook that inserts
XML syntax into JavaScript. It can use JSX we require to contain the Babel library and
change <script type="text/javascript"> to <script type="text/babel"> for translating JSX to
Javascript program.

<!DOCTYPE html>
<html>
<head></head>
<body>
<script type="text/javascript" src="/path/to/react.js"></script>
<script type="text/javascript" src="/path/to/react-dom.js"></script>
<script src="https://npmcdn.com/babel-core@5.8.38/browser.min.js"></script>
<script type="text/babel">
// Use react JSX program here or in an individual file
</script>
</body>
</html>

Installing ReactJS via npm

We can also install React using npm by doing the following:

npm install --save react react-dom

To use React in our JavaScript project, we can do the following:

var React = require('react');
var ReactDOM = require('react-dom');
ReactDOM.render(<App/>, ...);

Installing React via Yarn

Facebook released its package manager, Yarn, which can also be used to install React.
After installing Yarn, we are just required to run this command:

yarn add react react-dom

We can then use React in our project precisely as if we had installed React via npm.

https://reactjs.org/docs/getting-started.html

7. What is the difference between ReactJS and AngularJS?
This is among the most common ReactJS interview questions. We have curated a simple
tabular comparison to help you understand the differences between ReactJS vs AngularJS.

ReactJS AngularJS
Definition ReactJS is an open-source

JavaScript library. It is
used to develop a user
interface for a single-page
application. It is
answerable only for the
view layer of the
application.

AngularJS is an
open-source JavaScript
framework that can
develop a powerful web

application. It is an MVC
framework that works
with the MVC platform,
where it facilitates
development by giving a
dependable solution.

Developed By Facebook Google
Data Binding ReactJS supports one-way

binding. It provides
singular behavior for your
application. One-way
data-binding defines
some changes we create
to the model that
influence the view, but
not the other way around.
In these methods, the
data only flows in one
direction.

AngularJS uses a two-way
data binding, which links
the Document Object
Model (DOM) values to
model data. It defines if a
new value is supported in
the app for user
interaction with the field.
It will appear in the
update of both the view
and the model.

Simplicity React is not simple, and it
takes some time to start a
project.

Angular is easy and simple
to understand. However,
its inherent complexity
sometimes confuses.

DOM Usage React uses a virtual DOM.
A virtual DOM is a secure
version of the DOM. We
can modify any element
rapidly without needing
to render the whole
DOM.

Angular uses the
browser's DOM.

Application Structure React is not an MVC-like
Framework. It is like a
view-based library. React
does not demand its
client or developer to use
some particular
application structure.

Angular is a
complete-featured MVC
Framework. Angular
MVC-based structure
always permits the
application to split into
three associated parts so
that they can be simply
manipulated.

8. What is the difference between ReactJS and React Native?
Here is the ReactJS and React Native comparison to understand the differences between
the two:

React JS React Native
Definition ReactJS is a JavaScript

library responsible for
developing a hierarchy of
user interface
components. It is
essential for the rendering
of user interface
components. It offers
support for both the
front-end and server-side.

React Native is an
open-source JavaScript
framework. It facilitates a
mobile application for iOS
Android, and Windows. It
uses only JavaScript to
develop a cross-platform
mobile app. React Native
is similar to React but
uses native components
instead of web
components as building
blocks.

Setup and Running
Process

React.js is a JavaScript
library that we can use for
web development. When
beginning a new project
and setting up ReactJS,
we must choose
Webpack, a bundler. We
will then determine which
wrapping modules will
particularly suit our
project.

In React Native, we have
everything we require to
establish and get started.
It is so simple and quick to
release the framework. All
it takes is to run one
command in our terminal,
and we are ready to begin
programming our
first-ever React Native
app. We will require

Xcode (for iOS) or Android
Studio (for Android)
installed on our system to
run the app. It uses an
emulator of the focus
platform or tests its
implementation on our
tool.

Animations In Reactjs, animation is
possible using CSS, just
like typcial web
development.

In React Native, an
animated API is used for
persuasive animation
across multiple elements
of the React Native
application.

DOM and Styling Virtual DOM is used to
deliver browser code in
Reactjs.

In React Native, native
APIs are used to deliver
elements on mobile.

Capabilities React JS was created to
keep Search Engine
Optimization
(SEO) in mind, in which
node is utilized for
rendering on the
client-server. Though
numerous equivalent
tools support this view of
the server to rendering,
they are accessible to
insecure hacks. This is
separate from an
extensive amount of
developer support
needed for maintenance.

React Native is exclusively
dedicated to developing
mobile UI. It defines that
separated from being
centered on UI, Reacts
Native also serves as a
JavaScript library, not a
framework. Hence the UI
built is hugely responsive
and adds a smooth feel to
our mobile application
and quicker load times.

9. Which browsers does ReactJS support?

It supports all the popular and most used web browsers like Google Chrome, Firefox,

Mozilla, Microsoft Edge, etc. It doesn’t support browsers built without ES5 methods,

like Internet Explorer.

10. What is JSX in React?

JSX is a preprocessor phase that inserts XML syntax into JavaScript. We can use React

without JSX, yet JSX makes React a lot more classic.

It is just a similar XML. JSX tags contain a tag name, attributes, and children. If an

attribute value is placed within quotes, the value is a string. Alternatively, wrap the

value in braces, and the value is the confined JavaScript expression.

JSX gives syntactic sugar to React.createElement(component, props, ...children)

function.

11. What are the benefits of using JSX in React?

The advantages of JSX are as follows:

● It is always quick as it implements optimization while assembling a program to

vanilla JavaScript.

● JSX is additionally type-safe, which defines it as carefully composed, and most

of the errors can be found during the compilation of the JSX code to

JavaScript.

● It consistently makes writing templates simpler and quicker if we are simple

with HTML syntax.

12. What is the difference between DOM and Virtual DOM in
ReactJS?

Another common question asked in the ReactJS job interviews is about the comparison
between DOM and VDOM. Here is the answer:

DOM

DOM represents the Document Object Model. It is also known as HTML DOM, an

abstraction of a structured code known as HTML for web developers. DOM and HTML

code are associated, as the elements of HTML are called nodes of DOM.

It describes a structure where users can create, alter, modify documents, and present

the content. Therefore while HTML is text, DOM is an in-memory definition of this

content.

Virtual DOM (VDOM)

VDOM in ReactJS is a method that syncs the virtual user interface with the real

document object model. It is not a dedicated technology but a pattern that helps in

handling the events, updating manual DOM, as well as manipulating the attributes.

13. What is the use of keys in ReactJS?

Keys recognize unique virtual DOM elements with their related data driving the UI. It

supports React to develop rendering by recycling existing DOM components. Keys

must be unique numbers or strings. Rather than re-rendering with keys, React only

re-orders the components. It enhances the application’s execution.

14. What is Relay in ReactJS?

Relay is a JavaScript framework supporting an information layer and user-server

connection to web applications utilizing the React view layer.

15. What is the difference between createElement and
cloneElement?

JSX components are transpiled to React.createElement() functions to make React

elements that will be used for the object definition of UI.

Whereas, cloneElement is used to clone an element and pass it new props.

16. How to create components in React?

It is one of the frequently asked React interview questions for freshers. You must

know that there are two approaches to creating a component in ReactJS:

Functional Components

It is the simplest method of creating the React component. These pure JavaScript

functions obtain the props object as the first argument and return the react

component.

function Hello({ message }) {

return <h1>{`Hello, ${message}`}</h1>

}

Class components

We can use ES6 class to create a component. The function component can be written

as:

class App extends React.Component {

render() {

return <h2>{`Hii, ${this.props.message}`}</h2>

}

}

17. What is a React State?

States are the soul of React elements. These are the source of information and

should be maintained as simply as feasible.

ReactJS states are the objects which decide the component’s rendering and behavior.

They are mutable, unlike the props, and generate powerful and interactive elements.

They are accessed through this.state().

18. What are React Props?

Props are inputs to components. They are read-only components that should be kept

immutable. ReactJS Props are used to pass information and methods from a parent

component to a child component.

19. What are Default Props?

In ReactJS, defaultProps authorize us to set default, or fallback, values for our

component props. defaultProps are helpful when we call components from various

views with fixed props, but in some views, we are required to pass several values.

Example of React Default Props

class MyApp extends React.Component {...}

MyApp.defaultProps = {

randomObject: {},

...

}

20. What is the difference between state and props in
ReactJS?

Here is the tabular comparison between React state and props:

State Props
The state is mutable. Props are immutable.

The state influence data about the
components.

Props enable us to pass data from one
component to another as an argument.

They do not allow to generate reusable
components.

They allow to make reusable components.

The State is internal and managed by the
component itself.

Props are external and managed by
whatever renders the component.

The child component cannot access states. The child component can access props.

It can be used for rendering dynamic
changes with the component.

It is used to connect components.

21. What is setState() in ReactJS?
The primary method using which we create UI updates to our React applications is through a
call to the setState() function. This function will execute a shallow merge between the new
state that we give and the previous state and trigger a re-render of our component and all
decedents.

22. What are the Parameters of setState()?

There are two parameters of setstate() as follows:

1. Updater: It can be an object with several key-value pairs that should be

combined into the state or a function that restores such an object.

2. Call-back (optional): The function implemented after setState() is

implemented effectively. Because calls to setState() are not ensured by React

to be atomic, this can be beneficial if we need to implement some action after

we are positive that setState() has been performed effectively.

24. What is the arrow function in React?
An arrow function is also known as the ‘fat arrow function (=>).’ It enables binding

the context of components properly because auto-binding is not possible by default

in ES6. In addition, it creates it easier to work with higher-order components.

Example

1. Without using Arrow functions

render() {

return (<MyInput onChange={this.handleChange.bind(this) } />)

}

2. Using Arrow Functions

render() {

return (<MyInput onChange={(e)=>this.handleOnChange(e) } />)

}

25. What is the context in ReactJS?

The context supports a method to pass information through the component tree

without giving props down manually at each level.

For example, authenticated customers, locale preference, and UI theme should be

acquired in the application by many components.

const {Provider, User} = React.createContext(defaultValue)

26. What are React Mixins?

Mixins are an approach to separate elements from having standard functionality. It

should not be used and can be replaced with higher-order components or decorators.

27. What is the context.consumer in React?

A consumer is a React element that subscribes to text changes. It needed a function

as a child that accepts the current context value as a parameter and returns a react

node. The value parameter passed to the function will be similar to the nearest

provider’s value props for this context above in the tree.

Example

<MyContext.Consumer>

{value => /* render something depend on the context value */}

</MyContext.Consumer>

28. What is React Fiber?

Fiber is the new reconciliation engine or re-executing the basic algorithm in React

v16. The objective of React Fiber is to expand its appropriateness for fields like

animation, design, gestures, and the ability to pause, abort, or reuse work and assign

priority to multiple types of updates; and new concurrency primitives.

29. What is React reconciliation?

When a component's props or state changes, React determines whether an actual

DOM update is essential by contrasting the recently returned element with the

previously rendered one.

When they are not similar, they will update the DOM. This process is known as

reconciliation in ReactJS.

30. What are Pure Components?

Pure components are the easiest and quickest components that can be written. They

can restore any component which has a render(). These components upgrade the

program's simplicity and the application's execution.

Advanced ReactJS Interview Questions for Experienced
If you have worked in this field for some years, then our ReactJS interview questions for
senior developer or experienced professionals (1-5 years) are as follows:

1. Why use JSX in React?
There are a number of important reasons behind using JSX:

● It is faster than regular JavaScript because it implements optimization while

translating the program to JavaScript.

● JSX can separate innovations by placing markup and logic in separate

documents, React uses components that include both.

● It is type-safe, and some bugs can be found at compilation time.

● It makes it simpler to develop templates.

2. Why a web directory can’t read JSX?

Web directory cannot read JSX directly because they can only read JavaScript objects,

and JSX is not an ordinary JavaScript object. Accordingly, we must change the JSX

document into a JavaScript object using transpilers like Babel and then pass it to the

browser.

3. What is DOM diffing?

When the elements are rendered twice, Virtual DOM starts checking the changes

elements have got. They define the changed component on the page. Several other

components don’t go through changes. It can decrease the DOM changes due to

client activities, and treat DOM doffing. It is generally done to boost the execution of

the browser. This is the reason for its capability to execute all the functions rapidly.

4. What is the role of of render() in React?

Every React component should have a render() necessarily. It returns a single React

component, which describes the native DOM component. If more than one HTML

element should be rendered, then they should be arranged inside one enclosing tag

including <form>, <group>, <div>, etc.

This function should remain pure, i.e., it must return a similar outcome each time it is

invoked.

5. What is the difference between elements and components in
ReactJS?

Here is the tabular comparison of React elements and components:

Elements Components
An element is a plain JavaScript object
representing the component state, DOM
node, and desired properties.

A component is the core building
structure of the React application. It is a
class or function which takes an input
and returns a React element.

It only holds data about the component
type, its properties, and any child
elements inside it.

It can contain state and props and access
the React lifecycle methods.

It is immutable. It is mutable.
Example:
const element = React.createElement(
'div',
{id: 'login-btn'},

Example:
function Button ({ onLogin }) {
return React.createElement(
'div',
{id: 'login-btn', onClick: onLogin},

'Login'
)

'Login'
)
}

6. What are Stateless Functional Components?

In numerous applications, smart components occupy state but render dumb

components that receive props and return HTML as JSX. Stateless functional

components are substantially more reusable and have a positive execution impact on

our application.

They have two main characteristics:

● When rendered, they get an object with all the props passed down.

● They should restore the JSX to be rendered.

7. What are Stateful Components in ReactJS?

If the component’s behavior is dependent on the state of the component, it tends to

be defined as a stateful component. These stateful components are continually class

components and have a state that gets initialized in the constructor.

8. What is the difference between Stateful and Stateless
Components?

We have compared the stateful and stateless components below:

Stateful Component Stateless Component
It stores info about a component’s state
change in memory.

It evaluates the internal state of the
components.

It includes information on past, current,
and likely future changes in state.

It contains no information on history,
present, or potential future state
changes.

It is also called a class component. It is also called a functional component.

It can work with all the lifecycle
methods of React.

It cannot work with any lifecycle method
of React.

9. When to use the class component over a function
component?

If the component requires state or lifecycle methods, then use class components;

otherwise, use function components.

From React 16.8, with the inclusion of hooks, we can use state, lifecycle methods,

and other characteristics that were only feasible in a class component right in our

function component.

10. What is the differences between setState() and
replaceState() methods?

When we use setState(), the current and previous states are joined. replaceState()

throws out the current state and restores it with only what we provide.

setState() is used except if we require to delete all previous keys for some reason. We

can also set state to false/null in setState() rather than using replaceState().

11. What is Prop Drilling?

When developing a React application, a deeply nested element often needs to use

data provided by another element that is much higher in the hierarchy. The simplest

method is passing a prop from each component to the next in the authority from the

source element to the deeply nested element. This is called prop drilling.

12. What is the difference between componentWillMount() and
componentDidMount()?

This is one of the most common React interview questions for senior developer. You must
know the differences between the two, as mentioned below:

componentWillMount() componentDidMount()
This is called only once through the
component lifecycle before the element
is rendered to the server. It is used to
determine props and do any excess logic
based on them.

It is called only on the user end. It is
generally performed after the initial
render when a user has received data
from the server.

It is used to execute state changes
before the initial render.

It enables us to implement all kinds of
advanced interactions, including state
changes.

It is invoked just directly after the
mounting has occurred.

Putting the data loading code in this
only ensures that data is fetched from
the client's end.

Users should avoid using async
initialization to minimize side effects or
subscriptions in this method.

The data does not store until the initial
render is done. Hence, users must set an
initial state properly to eradicate
undefined state errors.

13. How to bind approaches or event handlers in JSX
callbacks?

There are three possible approaches to manage this:

Binding in Constructor

The methods are not constrained by default in JavaScript classes. A similar thing

relates to react event handlers represented as class methods. It can generally bind

them in the constructor.

class Component extends React.Component {

constructor(props) {

super(props)

this.handleClick = this.handleClick.bind(this)

}

handleClick() {

// ...

}

}

Public class fields syntax

If we don't like to use the bind method, then public class fields syntax can be used to

bind callbacks accurately.

handleClick = () => {

console.log('this is:', this)

}

<button onClick={this.handleClick}>

{'Click me'}

</button>

Arrow functions in callbacks

We can use arrow functions precisely in the callbacks.

<button onClick={(event) => this.handleClick(event)}>

{'Click me'}

</button>

14. How are Error Boundaries handled in React V15?

React version 15 supports the error boundaries by utilizing the unstable_handleError

method. It is termed to componentDidCatch in React Version 16.

15. What is the aim of getDerivedStateFromProps() lifecycle
method?

A new static getDerivedStateFromProps() lifecycle method is invoked after an

element is instantiated as well as before it is re-rendered. It can return an object to

refresh the state or nullify that the new props do not need state updates.

class MyApp extends React.Component {

static getDerivedStateFromProps(props, state) {

// ...

}

}

16. What is render prop in React?

Render prop is a simple method for sharing programs between components using a

prop whose value is a function. The following component uses render prop, which

returns a React element.

<DataProvider render={data => (

<h1>{`Hello ${data.target}`}</h1>

)}/>

17. What is the lifecycle method of React Component?

Lifecycle methods are used to run programs and interact with our components at

various points in the component’s life. These methods are based on a component,

Mounting, Updating, and Unmounting.

Component Creation

When a React component is created, several functions are called:

● If we are using React.createClass (ES5), 5 user-defined functions are called.

● If we are using class Component extends React.Component (ES6), 3

user-defined functions are called.

getDefaultProps() (ES5 only)

This is the first method called.

Prop values restored by this function will be used as defaults if they are not described

when the component is instantiated.

getInitialState() (ES5 only)

This is the second method called.

The return value of getInitialState() describe the initial state of the React component.

The React core will call this function and select the restore value to this.state.

Example

this.state.count will be initialized with the value of this.props.initialCount:

getInitialState() {

return {

count : this.props.initialCount

};

}

componentWillMount() (ES5 and ES6)

This is the third method called.

This function can make final changes to the component before being added to the

DOM.

componentWillMount() {

...

}

render() (ES5 and ES6)

This is the fourth method called.

The render() function must be a pure function of the component's state and props. It

returns a single element that defines the component during the rendering process

and should either be a description of a native DOM component (e.g., <p/>) or a

composite component. If nothing should be performed, it can return invalid or

undefined.

This function will be recalled after the component's props or state changes.

render() {

return (

<div>

Hello, {this.props.name}!

</div>

);

}

componentDidMount() (ES5 and ES6)

This is the fifth method called.

The component has been mounted, and we can create the component's DOM nodes,

e.g., via refs.

This method should be used for:

● Preparing timers

● Fetching information

● Adding event listeners

● Manipulating DOM component

componentDidMount() {

...

}

ES6 Syntax

If the component is represented using ES6 class syntax, the functions

getDefaultProps() and getInitialState() cannot be used.

Rather than we declare our defaultProps as a static property on the class and declare

the state shape and original state in the constructor of our class. These are both set

on the class instance at construction time before any other React life cycle function is

called.

The following example shows this alternative approach:

class MyReactClass extends React.Component {

constructor(props){

super(props);

this.state = {

count: this.props.initialCount

};

}

upCount() {

this.setState((prevState) => ({

count: prevState.count + 1

}));

}

render() {

return (

<div>

Hello, {this.props.name}!

You clicked the button {this.state.count} times.

<button onClick={this.upCount}>Click here!</button>

</div>

);

}

}

MyReactClass.defaultProps = {

name: 'Bob',

initialCount: 0

};

Replacing getDefaultProps()

Default values for the component props are stated by framework the defaultProps

property of the class:

MyReactClass.defaultProps = {

name: 'Bob',

initialCount: 0

};

Replacing getInitialState()

The idiomatic way to set up the component's initial state is to set this. state in the

constructor:

constructor(props){

super(props);

this.state = {

count: this.props.initialCount

};

}

Component Removal

This method is known before a component is unmounted from the DOM. This phase

includes only one method and is given below.

componentWillUnmount()

This method is invoked directly before a component is destroyed and unmounted

permanently. It implements any necessary cleanup related function, including

invalidating timers, and event listeners, canceling network requests, or cleaning up

the DOM component. If a component instance is unmounted, we cannot mount it

again.

Example

import React, { Component } from 'react';

export default class SideMenu extends Component {

constructor(props) {

super(props);

this.state = {

...

};

this.openMenu = this.openMenu.bind(this);

this.closeMenu = this.closeMenu.bind(this);

}

componentDidMount() {

document.addEventListener("click", this.closeMenu);

}

componentWillUnmount() {

document.removeEventListener("click", this.closeMenu);

}

openMenu() {

...

}

closeMenu() {

...

}

render() {

return (

<div>

<a

href = "javascript:void(0)"

className = "closebtn"

onClick = {this.closeMenu}

>

×

<div>

Some other structure

</div>

</div>

);

}

}

Component Update

It is the next stage of the lifecycle of a react component. This stage allows managing

user interaction and support interaction with the components hierarchy. In addition,

this stage aims to ensure that the component is showing the latest version of itself.

componentWillReceiveProps(nextProps)

This is the function called on properties changes. When the component's properties

change, it will call this function with the new properties. We can access the old props

with this.props and the new props with nextProps.

With these variables, we can do some comparison operations between old and new

props or call functions because of a property change, etc.

shouldComponentUpdate(nextProps, nextState)

This is the second function known as properties changes and the first on state

changes.

By default, if another component / our component changes a property/state of our

component, it will render a new version. Therefore, in this method, this function

always returns true.

We can override this function and select more accurately if our component must

update or not.

This function is generally used for optimization.

In the method of the function returns false, the update pipeline stops directly.

componentShouldUpdate(nextProps, nextState){

return this.props.name !== nextProps.name ||

this.state.count !== nextState.count;

}

componentWillUpdate(nextProps, nextState)

This function works like componentWillMount().Here, we can't modify the

component state by invoking this.setState() method. It will not be known,

if shouldComponentUpdate() returns false.

render()

It is invoked to determine this.props and this.state and return one of the following

types: React elements, Arrays and fragments, Booleans or null, String and Number. If

shouldComponentUpdate() returns false, the code within render() will be invoked

again to assure that the component shows itself correctly.

componentDidUpdate(prevProps, prevState)

It is invoked directly after the component updating appears. In this method, we can

put some code inside this, which we need to implement once the updating occurs.

This method is not invoked for the basic render.

18. What is PropTypes library in React?

PropTypes is the type-checking addition to React Library, which exports a range of

validators to ensure the data component received is valid. As a result, it reduces

several bugs and makes components self-documented.

19. How can we renew the State of a component?

We can renew the State of a component using this.setState() method. This method

does not continually replace the State immediately. Instead, it only include changes

to the initial State. It is the main method to update the user interface in response to

event handlers and server responses.

20. What is NextJS?

Next.js is a famous and lightweight framework for static and server-rendered

applications that work with React. It also gives styling and routing solutions.

21. What are the features of Next.js?

The main features of Next.js are as follows:

● It is used to server-rendered by default.

● It contains programmed code-parting for quicker page loads.

● It is used to clean user-side routing (page-based).

● It can have a Webpack-based dev setting that provides (HMR).

● It can be easy to perform with Express or another Node.js HTTP server.

● It is used customizable with our own Babel and Webpack configurations.

22. What are Error Boundaries?

One of the frequently asked ReactJS interview questions for experienced

professionals is about error boundaries. You must know its meaning and role, as

explained below.

Error boundaries are the React components that catch the JavaScript errors

somewhere in their child component tree and log those errors. As a result, they will

show a fallback user interface rather than the component tree that crashed.

A class would be an error boundary if it defines both the lifecycle methods static

getDerivedStateFromError() or componentDidCatch(). The need for static

getDerivedStateFromError() is for rendering a fallback UI after a bug has been

thrown. The need for componentDidCatch() is for logging the error data.

Upskill Yourself With Expert-led Online Training Programs!

● Web Development Course

● React Js Course

● Wordpress Course

● Mern Stack Course

● Full Stack Developer Course

● HTML Course

● Javascript Course

● PHP Curse

● Power BI Course

● Tableau Course

View All Courses

All Courses Include:

● Regular Live Classes

● Mentorship by Industry Experts

https://www.wscubetech.com/online-web-development-course-india.html
https://www.wscubetech.com/reactjs-course.html
https://www.wscubetech.com/best-wordpress-online-course-india.html
https://www.wscubetech.com/online-mern-stack-developer-course-india.html
https://www.wscubetech.com/full-stack-developer-course.html
https://www.wscubetech.com/online-html-course.html
https://www.wscubetech.com/javascript-course.html
https://www.wscubetech.com/php-course.html
https://www.wscubetech.com/online-power-bi-course.html
https://www.wscubetech.com/tableau-course.html
https://www.wscubetech.com/training-courses.html

● Dedicated Doubt Sessions

● Industry-recognized Certification

● Career Support

